首页> 外文OA文献 >In vivo pharmacokinetics of T2 contrast agents based on iron oxide nanoparticles: optimization of blood circulation times
【2h】

In vivo pharmacokinetics of T2 contrast agents based on iron oxide nanoparticles: optimization of blood circulation times

机译:基于氧化铁纳米颗粒的T2造影剂的体内药代动力学:血液循环时间的优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetic nanoparticles have been extensively investigated for in vivo nanomedical applications in the last decade. PEG coating improves the solubility and stability of the nanoparticles, and provides stealth properties by preventing opsonization and subsequent removal by the reticuloendothelial system. All these effects conferred by the PEG coating are dependent on its molecular weight. Therefore, the selection of the right MW of PEG is a crucial point in the design of new nanomaterials for in vivo applications. The aim of this work lies in the in vivo optimization of the circulation times of small iron oxide nanoparticles by coating them with PEG of different MWs. PEGylated small superparamagnetic iron oxide nanoparticles (PEG-SPIONs), using PEG MWs ranging from 600 to 8000, were synthesized following a ligand exchange methodology, resulting in highly stable and water-soluble nanoparticles. Semi-quantitative and quantitative MRI studies allowed us to track the pharmacokinetics and biodistribution of intravenously injected PEG-SPIONs (HD < 50 nm) in vivo up to one week. Results show that high MW PEGs (6000–8000) lead to nanoparticle aggregation and low MW PEGs (≤1500) are not able to stabilize the 6 nm iron oxide nanoparticles in physiological medium or confer stealth properties, thus leading to rapid recognition by the RES. In contrast, PEG3000-SPIONs show excellent in vivo behavior, they do not aggregate and they exhibit better stealth properties, giving rise to slower liver uptake and longer circulation times. In conclusion, 3000 Da turned out to be the optimal MW for the PEGylation of small nanoparticles (∼6 nm) designed for biomedical applications in which long circulation times together with moderate liver uptake are desirable.
机译:在过去的十年中,磁性纳米粒子已被广泛研究用于体内纳米医学应用。 PEG涂层改善了纳米颗粒的溶解度和稳定性,并通过防止调理作用和随后被网状内皮系统去除而提供了隐身性能。 PEG涂层赋予的所有这些作用均取决于其分子量。因此,选择合适的PEG分子量是设计用于体内应用的新型纳米材料的关键。这项工作的目的在于在体内优化小氧化铁纳米颗粒的循环时间,方法是将它们涂上不同分子量的PEG。按照配体交换方法,使用分子量范围为600至8000的PEG MWs合成了PEG化的小型超顺磁性氧化铁纳米颗粒(PEG-SPIONs),得到了高度稳定且水溶性的纳米颗粒。半定量和定量MRI研究使我们能够追踪长达一周的静脉注射PEG-SPIONs(HD <50 nm)在体内的药代动力学和生物分布。结果表明,高分子量PEG(6000–8000)导致纳米颗粒聚集,而低分子量PEG(≤1500)不能在生理介质中稳定6 nm氧化铁纳米颗粒或赋予隐形性能,从而导致RES快速识别。相反,PEG3000-SPIONs表现出出色的体内行为,它们不聚集并且显示出更好的隐形性能,从而导致肝脏吸收较慢和循环时间更长。总之,对于设计用于生物医学应用的小型纳米颗粒(〜6 nm)进行聚乙二醇化,最理想的分子量为3000 Da,因为生物医学应用需要较长的循环时间以及适度的肝脏吸收。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号